Visualization of cholesterol deposits in lysosomes of Niemann-Pick type C fibroblasts using recombinant perfringolysin O
نویسندگان
چکیده
BACKGROUND Niemann-Pick disease type C (NPC) is caused by defects in cholesterol efflux from lysosomes due to mutations of genes coding for NPC1 and NPC2 proteins. As a result, massive accumulation of unesterified cholesterol in late endosomes/lysosomes is observed. At the level of the organism these cholesterol metabolism disorders are manifested by progressive neurodegeneration and hepatosplenomegaly. Until now filipin staining of cholesterol deposits in cells has been widely used for NPC diagnostics. In this report we present an alternative method for cholesterol visualization and estimation using a cholesterol-binding bacterial toxin, perfringolysin O. METHODS To detect cholesterol deposits, a recombinant probe, perfringolysin O fused with glutathione S-transferase (GST-PFO) was prepared. GST-PFO followed by labeled antibodies or streptavidin was applied for immunofluorescence and immunoelectron microscopy to analyze cholesterol distribution in cells derived from NPC patients. The identity of GST-PFO-positive structures was revealed by a quantitative analysis of their colocalization with several organelle markers. Cellular ELISA using GST-PFO was developed to estimate the level of unesterified cholesterol in NPC cells. RESULTS GST-PFO recognized cholesterol with high sensitivity and selectivity, as demonstrated by a protein/lipid overlay assay and surface plasmon resonance analysis. When applied to stain NPC cells, GST-PFO decorated abundant deposits of cholesterol in intracellular vesicles that colocalized with filipin-positive structures. These cholesterol deposits were resistant to 0.05%-0.2% Triton X-100 used for cells permeabilization in the staining procedure. GST-PFO-stained organelles were identified as late endosomes/lysosomes based on their colocalization with LAMP-1 and lysobisphosphatidic acid. On the other hand, GST-PFO did not colocalize with markers of the Golgi apparatus, endoplasmic reticulum, peroxisomes or with actin filaments. Only negligible GST-PFO staining was seen in fibroblasts of healthy individuals. When applied to cellular ELISA, GST-PFO followed by anti-GST-peroxidase allowed a semiquantitative analysis of cholesterol level in cells of NPC patients. Binding of GST-PFO to NPC cells was nearly abolished after extraction of cholesterol with methyl-β-cyclodextrin. CONCLUSIONS Our data indicate that a recombinant protein GST-PFO can be used to detect cholesterol accumulated in NPC cells by immunofluorescence and cellular ELISA. GST-PFO can be a convenient and reliable probe for revealing cholesterol deposits in cells and can be useful in diagnostics of NPC disease.
منابع مشابه
Aberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease
Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...
متن کاملGlycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells.
Lysosomes are lined with a glycocalyx that protects the limiting membrane from the action of degradative enzymes. We tested the hypothesis that Niemann-Pick type C 1 (NPC1) protein aids the transfer of low density lipoprotein-derived cholesterol across this glycocalyx. A prediction of this model is that cells will be less dependent upon NPC1 if their glycocalyx is decreased in density. Lysosome...
متن کاملThe intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts
Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and ce...
متن کاملRyanodine receptor antagonists adapt NPC1 proteostasis to ameliorate lipid storage in Niemann-Pick type C disease fibroblasts.
Niemann-Pick type C disease is a lysosomal storage disorder most often caused by loss-of-function mutations in the NPC1 gene. The encoded multipass transmembrane protein is required for cholesterol efflux from late endosomes and lysosomes. Numerous missense mutations in the NPC1 gene cause disease, including the prevalent I1061T mutation that leads to protein misfolding and degradation. Here, w...
متن کاملδ-Tocopherol reduces lipid accumulation in Niemann-Pick type C1 and Wolman cholesterol storage disorders.
Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are s...
متن کامل